Ques:
Ans:
package highlydivisible;
public class HighlyDivisible {
public static void main(String[] args) {
int nthtriplet = 9;
int tripdes = 500;
int cnt = 0;
int gettriplet = 0;
boolean val=false;
int[] obtaindivisor=new int[nthtriplet-1];
int matchpos=0;
for (int i = 2; i < 200000; i++) {
gettriplet = findtriplet(i);
obtaindivisor=getdivisor(gettriplet, i);
for(int j:obtaindivisor){
if(j!=0){
cnt++;
}
if(cnt==tripdes){
val=true;
matchpos=i;
break;
}
}
if(val){
System.out.println("the position is "+matchpos+" & triplet is "+findtriplet(i));
break;
}
cnt=0;
}
}
public static int findtriplet(int num) {
int sump = 0;
for (int i = 1; i <= num; i++) {
sump += i;
}
return sump;
}
public static int[] getdivisor(int sumoftriplets, int uptonum) {
int[] getd = new int[uptonum+2];
int j = 0;
for (int i = 1; i <= sumoftriplets; i++) {
if (sumoftriplets % i == 0) {
getd[j] = i;
j++;
}
}
return getd;
}
}
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
What is the value of the first triangle number to have over five hundred divisors?
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:1: 1We can see that 28 is the first triangle number to have over five divisors.
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
What is the value of the first triangle number to have over five hundred divisors?
Ans:
package highlydivisible;
public class HighlyDivisible {
public static void main(String[] args) {
int nthtriplet = 9;
int tripdes = 500;
int cnt = 0;
int gettriplet = 0;
boolean val=false;
int[] obtaindivisor=new int[nthtriplet-1];
int matchpos=0;
for (int i = 2; i < 200000; i++) {
gettriplet = findtriplet(i);
obtaindivisor=getdivisor(gettriplet, i);
for(int j:obtaindivisor){
if(j!=0){
cnt++;
}
if(cnt==tripdes){
val=true;
matchpos=i;
break;
}
}
if(val){
System.out.println("the position is "+matchpos+" & triplet is "+findtriplet(i));
break;
}
cnt=0;
}
}
public static int findtriplet(int num) {
int sump = 0;
for (int i = 1; i <= num; i++) {
sump += i;
}
return sump;
}
public static int[] getdivisor(int sumoftriplets, int uptonum) {
int[] getd = new int[uptonum+2];
int j = 0;
for (int i = 1; i <= sumoftriplets; i++) {
if (sumoftriplets % i == 0) {
getd[j] = i;
j++;
}
}
return getd;
}
}
No comments:
Post a Comment